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Abstract—Despite significant advances in the porting of sci-
entific applications to novel architectures such as compute-
optimized graphics processors, many-core processor/accelerators
and, even special-purpose function units, the vast majority of
scientific calculations are still performed on high-performance,
commodity server processors. Even in the cases of applications
which have been ported to new architectures, frequent serial sec-
tions still require strong server-class processor cores to compute
as fast as possible.

In this paper we report on a set of benchmark studies which
evaluate Intel’s latest Skylake Xeon server processor. Skylake
represents a significant change in the Xeon product line with
wider SIMD vector units, a redesigned cache architecture, and,
an increased number of memory channels. The wider vector units
provide 2x improvement for some compute-intensive applications
and the combined memory changes can provide close to 2x the
memory bandwidth. We evaluate these new hardware features
on several HPC-relevant mini-applications and benchmarks,
including, STREAM, LULESH, XSBench, HPCG and SW4Lite.
Together, the new hardware functions provide up to 1.8x speedup
on HPC benchmark codes when compared with the previous
generation Haswell processor core, providing much greater utility
to a broader range of HPC applications that rely on this class
of compute node.

Index Terms—High-Performance Computing, Commodity,
Processor, Evaluation

I. INTRODUCTION

The Department of Energy’s National Nuclear Security Ad-
ministration (NNSA) is one of the largest users of supercom-
puting machines in the world. In 2013, the NNSA issued an
updated Computing Strategy [1] for it’s Advanced Simulation
and Computing program that underpins the complex qualifica-
tion workload for the United States nuclear security program.
The Computing Strategy outlined two classes of computing
platform: (1) Advanced Technology Systems (“ATS”) – sys-
tems that blend large-scale capability computing with novel
hardware features to target higher application performance,
and, (2) Capacity Technology Systems (“CTS”) which are
cost/performance optimized, mid-size installations (typically
around a petaflop) for modest parallel-scale applications.

Traditionally, Capacity Systems within the NNSA have
been based on the leading server-class processors of the day
with previous systems having used processors from AMD [2]
and Intel [3]. The current generation of systems (named
Commodity Technology Systems-1 (CTS-1)) provide multiple

petaflops of computing power from dual-socket 18-core Intel
Broadwell processors [4] interconnected with Intel’s OmniPath
Generation-1 fabric [5].

The most recent installation of the Advanced Technology
System family is found in the NNSA Trinity platform [6]–
[8] installed at Los Alamos National Laboratory. Trinity is a
split machine design, with roughly 9,500 nodes of dual-socket
Haswell processors [9] and around 9,800 nodes of single-
socket Intel Knights Landing Xeon Phi. Given the consider-
able computing power provided by both classes of system,
the NNSA has significant interest in the benchmarking and
evaluation of next-generation server-class hardware designs for
future machine procurements.

In this paper, we describe results from a recent benchmark
study which evaluates the performance of a range of mi-
crobenchmarks, benchmarks and small applications on Intel’s
latest Skylake server processor [10]. The contributions of this
paper are:

• Microbenchmarking of the significant hardware changes
found in the Skylake server platform including Level-2
cache bandwidth, additional memory bandwidth available
from the increased number of memory channels, and,
compute performance from a doubling of the vector width
found in the AVX512 instruction set;

• Mini-application benchmarking to evaluate the potential
benefit to applications of these hardware changes. We
select a range of mini-applications that exhibit behaviors
found in larger HPC codes so that we can evaluate
each in a more direct context. Specifically, we use a
range of mini-applications that are known to experience:
bottlenecks from either: (1) memory bandwidth; (2) in-
direct memory accesses from cache; (3) indirect memory
accesses with operands usually retrieved from main mem-
ory, and, finally, (4) throughput of computation.

• Evaluation of each mini-application with respect to vec-
torization and hardware hyperthreading being enabled or
disabled in order to analyze the potential configuration
options (either at compilation or runtime) that users may
wish to select when porting codes to the new Skylake
Xeon processor family.

The remainder of this paper is laid out as follows: Section II



discusses the pertinent hardware changes that can be found
in the Skylake Xeon processor in greater depth. We describe
the benchmark systems used for our experimentation in Sec-
tion III. Microbenchmarking results for memory bandwidth,
cache bandwidth and compute are presented in Section IV.
We present mini-application studies in Section V. Finally,
we conclude the paper with a summary of our findings in
Section VI.

II. INTEL SKYLAKE SERVER PROCESSOR

Skylake is the 6th-generation of Intel’s Core microarchitecture
and is widely seen as a significant redesign of its traditional
Xeon server roadmap to provide increased performance and
improved performance per unit of power. General availability
of the processor came in 2017 and at the time of writing,
Skylake represents the most up-to-date server platform avail-
able from Intel. The principal changes of the Skylake Xeon
processor over its predecessors are:

• Mesh-based Interconnect - the core-to-core intercon-
nection fabric used to move coherence and data traffic
between caches the memory subsystem is changed from
a high-performance bus architecture to a two-dimensional
mesh building on Intel’s successful demonstration of the
technology in its Knights Landing Xeon Phi processor.
The use of a two-dimensional mesh has the potential to
reduce latency and increase bandwidth as the additional
path diversity between each processor core/private cache
and other components is increased.

• Cache Subsystem Redesign - the L3 cache available
per core on the Skylake server Xeon is decreased from
greater than 2MB per core to around 1.3MB. The silicon
area that is saved by the decrease is used, instead, to
increase the L2 size from 256kB per core to 1MB (a 4X
increase). Thus, each core now has an increased private
cache size that benefits applications with locality and can
help to reduce contention for L3 cache accesses.

• 512-bit Wide Vector Extensions - the server-grade
variant of the Skylake processor offers support for Intel’s
AVX512 ISA extensions that debuted in the Knights
Landing processor [11], [12]. While the increased width
of the vector units (doubled from 256-bits in the pre-
vious Haswell/Broadwell generation) provides significant
improvement for intensively vectorized codes. One of the
more significant gains from the use of the AVX512 ISA
is the availability of masking registers which permit lanes
to be selectively disabled in the case that operands should
not be worked on. As such, the compiler is afforded
much greater flexibility in selecting how application
code is vectorized in the presence of complex control
flow or conditionals. The issue of vector instructions in
Skylake is also significantly overhauled from previous
generations. Each core now has three vector ports. Ports
0 and 1 each have a 256bit wide vector unit that can be
selectively fused together to form a larger 512-bit path as
required by the instruction stream. A third port (Port 5)
in the core allows for simple (typically add, multiply,

etc. instructions), full 512-bit width instructions to be
issued. The effect is that the processor can consume less
power when shorter vectors are being processed but still
transition into dual 512-bit processing when required.

• Increased Memory Channels - the Skylake processor
provides an increase in memory channels moving from
4-channels in the previous generation to 6-channels in the
latest design. For memory bandwidth bound codes (which
are frequently found in the HPC setting), the availability
of 50% more memory channels is expected to provide a
significant boost in performance.

III. SYSTEMS USED FOR BENCHMARKING

For benchmarking, we use two systems provided by the
NNSA/ASC Advanced Architecture Test Beds project which
is run by Sandia National Laboratories for the purposes of
providing access to a broad cross-section of future high-
performance computing nodes [13].

The Haswell system, Shepard, provides dual-socket Xeon
E5-2697v3 processors which run at 2.3GHz. Each processor
comprises 16-cores with dual-SMT enabled per core for a
total of 64 hardware threads per node. A total of 128GB of
2133MT/s DDR4 system memory is available per node (64GB
spread across 4 channels per socket). Each processor core has
a private 32kB L1 and 256kB L2 cache with associativity
configured to 8-way for both. Each socket has a large 40MB
L3 cache which is distributed across the ring bus.

Skylake processors are provided in Sandia’s Blake system.
Each node provides dual-socket Xeon Platinum 8160 proces-
sors at 2.1GHz. The socket of an 8160 Platinum Skylake
contains 24 cores with dual-way SMT enabled per core,
thus, 96 hardware threads can be used per node. 192GB of
2666MT/s DDR4 system memory is provided for both sockets
(96GB per socket, spread across 6 memory channels). The
processor cores each have a private L1 and L2 cache of 32kB
and 1MB respectively (note that this is a 4x increase in L2
cache size per core over Haswell). The L1 caches maintain 8-
way associativity, while the L2 cache is changed to 16-way set
associative. A 33MB L3 distributed cache is provided across
the 2D processor mesh.

For all experiments reported in this paper we use the Intel
18.1.0 compiler (with GCC 4.9.3 compatibility enabled) with
architecture specific flags set for Skylake (-xCORE-AVX512)
and Haswell (-xCORE-AVX2) as appropriate. Where applica-
ble, Intel’s 18.1 Math Kernel Library is used for BLAS and
LAPACK calls. The configuration is set to use the OpenMP
threaded variant of the library and to permit automatic plat-
form optimized dispatch. All codes are compiled with a pro-
cessor ISA optimized build of OpenMPI 2.1.2. Both systems
run RedHat 7.4 Enterprise Linux with the most up to date
security patches applied at the time of writing (note, that these
include patches to address the recently exposed Spectre and
Meltdown security vulnerabilities).

To encourage more accurate analysis, we average each result
presented over a minimum of ten runs and select different
nodes for each run from our cluster at random to perform
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Fig. 1. Benchmarked STREAM Triad Memory Bandwidth on Dual-Socket
Haswell and Skylake Nodes. Higher is Better. Problem Size is approx 2.2GB

experiments. Our anecdotial observation is that we typically
see small (1-5%) variations in the results presented for well
configured runs where thread and process affinity are fully
specified.

IV. MICROBENCHMARKS

A. Memory Bandwidth

As described above, one of the most significant changes
that can be found in the server (Xeon) variant of the Sky-
lake processor is the increased number of memory channels,
moving from 4 to 6 channels. Figure 1 shows results of
executing an OpenMP compiled version of the community
accepted STREAM benchmark [14]. In this figure, we make
several benchmark studies: (1) execution with and with-out
vectorization, denoted by the use of the vector ISA or “No-
Vec” in the legend respectively and, (2), for accesses that
are between local-socket memory and remote-socket memory,
denoted as “Remote” when memory from the remote socket
NUMA domain is being benchmarked. For local accesses, the
figure shows the familiar plateauing from 1 thread to use of all
cores on the first socket (recall this is 16 cores on the Haswell
processor and 24 on Skylake), the curve then continues to
increase as cores on the second socket are used.

We note that for both Haswell and Skylake processors,
the use of vectorization improves memory bandwidth whether
accesses are local or remote. For the local case both pro-
ceessors gain by as much as 28GB/s. However, the impact
on Haswell (as a percentage of memory bandwidth lost) is
larger at between 23 - 30% versus 3 - 20% on Skylake.
While the reader might expect the memory bandwidth figures
to be approximately identical whether vectorization is or is
not used, the general trend in processor design is that more
efficient load/store operations (e.g. when vector loads are used)
continue to be the key determinant of memory subsystem
performance. For Skylake this observation continues to hold.

The figure also shows another observation about the dif-
ference in socket-to-socket performance between the two
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Fig. 2. Benchmarked Cache Bandwidth for a Single Processor Core of
Skylake and Haswell (Small Data Array Sizes, Problem Size configured per
X-Axis). Higher is Better
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Fig. 3. Benchmarked Cache Bandwidth for a Single Processor Core of
Skylake and Haswell (Larger Data Array Sizes, Problem Size configured per
X-Axis). Higher is Better

processors. The bandwidth of accessing remote socket memory
on Skylake is up to 2.2X higher than in the Haswell design,
achieving close to 48.75GB/s versus 23.5GB/s. For future
node designs with a single PCIe attached network interface
(as in our existing commodity server systems), the socket-to-
socket connectivity is an important factor in determining MPI
bandwidth into the interconnect.

B. Cache Bandwidth

Intel’s significant redesign of the caching structures and poli-
cies in its Skylake processor represent a potentially fundamen-
tal change for applications that have been written to utilize
cache blocking and well known cache sizing. The increase in
L2 cache size, which is now four times larger than Haswell,
does however, have the potential to provide significant gain in
performance for codes with good to moderate locality.

Figures 2 and 3 show the cache bandwidths achieved for a
single processor core performing read and write operations us-
ing the lmbench memory bandwidth benchmarking utility [15].
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Two figures are provided to improve clarity – the first, Figure 2
provides a zoomed in view of smaller data array sizes, the
second, Figure 3 provides a macro view of data array sizes
out to 2MB which exceed the L2 private cache size of the
Skylake core. The results show that the bandwidth available for
the Skylake is lower within the range of the L1 cache. Some
of this performance gap is accounted for by the lower clock of
the Skylake core (2.1GHz vs. 2.3GHz) however, the results do
appear to show that the L1 is slower despite this explanation.
The sharp drop at approximately 32kB, represents the change
to the L2 cache which provides lower bandwidth. In this case,
Skylake initially provides slightly lower read bandwidth and
slightly higher write bandwidth. The increased size of the
L2 cache on Skylake can also be seen as the reader follows
the line towards the right – Skylake continues to provide its
performance for a much greater range than its opposition.

One observation present from the graph is that despite our
setting the affinity of the benchmark to a single processor core,
the results from the Haswell runs show a much larger variation
in benchmark performance see by the frequent oscillations
in the results. The benchmark results from Skylake are con-
siderably smoother which may be attributed to the increased
associativity of the L2.

C. Floating Point Intensive Computation (DGEMM)

The doubling of the vector units in Skylake offers the potential
for the newest processor design to provide a significant boost
to compute-dense applications. However, simple increasing
of processor cores and vector widths comes at the cost of
higher power draw and thermal output. Figure 4 shows results
taken from repeated runs of a DGEMM (double-precision
dense matrix-dense matrix multiplication) benchmark with the
number of OpenMP threads being varied. We repeated this
benchmark result five times across ten different compute nodes
noticing only small (typically less than 2% variation in results).

TABLE I
BENCHMARKED KERNEL PERFORMANCE (REPORTED IN GFLOP/S) FOR
SKYLAKE AND HASWELL SERVER PROCESSORS, WITH AND WITHOUT

NATIVE VECTORIZATION ENABLED. HIGHER IS BETTER. ALL CORES USED
PER SOCKET IN MPI ONLY EXECUTION. TOTAL PROBLEM SIZE 86.5GB

Kernel Skylake Skylake Haswell Haswell
(AVX512) (NoVec) (AVX2) (NoVec)

DDOT 20.05 30.50 9.87 11.41
WAXPBY 16.70 16.88 9.53 9.35
SpMV 18.56 17.95 10.22 10.20
Multi-Grid 18.29 17.94 10.01 9.89
Solve (Total) 18.33 18.04 10.03 9.95

The first result of note is that the doubled vector width
performs as advertised with a doubling of the maximum
FLOP/s rate of the Skylake. A benchmarked maximum value
of 784GF/s is achieved at 16 cores versus a maximum of
392GF/s using 13 cores of the Haswell. We note however,
the shape of the Skylake curve differs from Haswell, in that
additional cores provided beyond 16 do not add additional
performance to the benchmark result. We attribute these results
to thermal throttling of the processor socket when there is
extensive of use of power-hungry wide-vector instructions in
the pipeline.

V. MINI-APPLICATIONS AND BENCHMARKS

A. High Performance Conjugate Gradient Benchmark
(HPCG)

The High Performance Conjugate Gradient benchmark
(HPCG) [16], [17] is a recent augmentation to the more
familiar High Performance LINPACK (HPL) benchmark suite
that defines the ranking of the “Top 500” supercomputers in
the world. In part, HPCG was created to address the criticism
that HPL has lost relevance in modern supercomputing due
to the adoption of newer algorithms and a growing acknowl-
edgement that the floating point calculation capabilities of
modern systems had far outpaced other bottlenecks leaving
many practical scientific applications unable to harness the
computational power reported in HPL runs.

Table I displays HPCG benchmark performance for the
most significant/time consuming kernels when run on Skylake
and Haswell processors. These runs are performed using
MPI only execution. For these configurations we perform
benchmarking with and without the native vector ISA enabled
during compilation. The results concur with the statement that
benchmarked performance is radically different to the HPL
numbers that might be expected (as seen in our DGEMM (the
predominant kernel for HPL) above).

Skylake delivers 80% higher performance than Haswell for
virtually all of the kernels executed. While this can expected
of kernels which have significant computation, the kernels of
HPCG, in particular the Sparse-matrix vector product (SpMV)
are considered heavily memory bandwidth bound and so would
be expected to gain by only as much as 50% over the Haswell
due to the extra two memory channels present in Skylake. Such
a result demonstrates that such kernels are not just benefiting



from additional hardware resources but, are, in fact, benefiting
from greater processor efficiency, such as higher aggregate
cache throughput and the additional load/store slots which
come from having extra processor cores and caches on the
Skylake die.

The limited gain from vectorization will come as no surprise
to frequent users of the HPCG reference code. The code
does not make use of restrict pointers which for almost all
compilers leads to the dependency analysis being unable to
determine that the code is safe for vector instruction gener-
ation. Significantly more performance is possible with this
code when more aggressive optimizations are employed [18].
We have presented the reference results to demonstrate what
unoptimized codes may expect to achieve on their initial ports
to new systems.

B. LULESH Hydrodynamics Mini-Application

LULESH is well exercised mini-application developed by
Lawrence Livermore National Laboratory for the purposes
of representing challenging hydrodynamics calculations over
unstructured meshes [19], [20]. Such codes are common in
many high-performance computing centers and are particularly
prevalent within the NNSA, commonly ranking amount the top
ten application codes in terms of CPU hours spent [19].

The unstructured nature of LULESH, like many of its
parent codes, makes the generation of efficient memory ac-
cesses particularly challenging as the access pattern cannot
be predetermined a priori as in the code of a structured
algorithm. During compilation, the compiler typically sees
some form of indirection and will need to generate operand
gather and/or scatter instructions for reading/writing to the
mesh respectively. Both Skylake and Haswell instruction sets
have support for vectorized gather and scatter instructions but
these have historically been known to be significantly less
efficient than the equivalent standard packed vector load/store
instructions.

While the unstructured nature of the algorithms present in
LULESH pose a challenging problem for efficient instruction
generation, the algorithm typically experiences a high degree
of locality in accesses due to the fact that mesh points
being computed on are often close in physical proximity and
therefore accesses are close in the data structures used. We
typically find high hit rates for the L1 and L2 cache access
patterns for such an algorithm which is likely to benefit the
redesigned cache structure of the Skylake core.

Figure 5 shows benchmarked LULESH Figure-of-Merit
(FOM) measured in the number of zones computed per second.
Note, for these benchmark runs we use the LULESH version
2.0.3 (the most current released code at the time of writing),
executing in OpenMP threaded mode, as the base implemen-
tation has an overly rigid requirement to decompose problems
when MPI ranks are employed, making scaling studies all but
impossible with this degree of fidelity. The results show that
for both processors the highest FOM is achieved using the
vectorized variant of the code although the difference between
the vectorized and non-vectorized variant is typically between
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Fig. 5. Benchmarked LULESH Figure-of-Merit on Skylake and Haswell
Processors. Higher is Better. Problem size is approximately 570MB

4 and 8%. We note that performance improvement to the basic
LULESH implementation is possible (as described in [21]).
In this case, the level of vectorization can be improved and
show larger gains. The use of SMT/hardware hyper-threading
shows a difference between the processors – as small core
counts (less than 16 cores) on the Skylake, using two hardware
threads per core results in performance improvements of
between 1 - 12%. Beyond the use of 16 cores, a single
hardware thread provides the highest performance, achieving
an FOM that is up to 10% faster. For Haswell, it is always
beneficial to use only a single hardware thread. Some of this
difference may be explained by thermal management on the
Skylake die, when intensive floating point instruction streams
are detected, the processor will respond to prevent overheating
and thermal damage to the chip. At 16 cores operating with
two threads per core, the instruction stream may generate
sufficient compute intensity that the on-die management of the
processor will scale back the execution performance. Overall,
Skylake achieves a performance improvement of between 1.58
- 1.63X over the Haswell processor.

C. XSBench Monte Carlo Macroscopic Cross Section Lookup
Benchmark

Monte Carlo transport algorithms are used in a variety of sci-
entific calculations including nuclear reactor design, medical
dosimetry and the simulation of nuclear reactions. The XS-
Bench mini-application [22], developed for the DOE’s CESAR
Nuclear Reactor simulation codesign project, is designed to
model one of the most computationally intensive macroscopic
neutron cross-section calculations. Such calculations can ac-
count for up to 85% of a complex particle transport simulation.
In keeping with the philosophy of mini-application design,
XSBench removes some of the less relevant instruction paths
and focuses on the essential performance-relevant aspects
of the algorithm used by the CESAR center. The principle
operation being benchmarked is the look up of cross-section
data from nuclide grids – a memory latency intensive set of
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indirect accesses to a large collection of data configured at the
application launch.

The random access, poor locality nature of the lookups
in XSBench (a significant number of which require accesses
reaching memory rather than being found in cache), means the
mini-application tends to experience bottlenecks on memory
subsystem latency. Figure 6 shows benchmarked lookups per
second from XSBench on the Skylake and Haswell processors.
Unlike our previous codes which benefit from greater locality
and, as such, are bottlenecked less by cache and memory miss
latencies, XSBench sees much greater performance gain from
the use of latency-hiding hardware threading, with approxi-
mately 20% more lookups being able to be performed per
second when SMT-2 mode is used. The effect is similar on
Haswell although the gain from the use of hardware threads
is lower with the performance increase limited to 16%.

The benefits of vectorization are also more pronounced in
XSBench than our previous benchmarking. The code sees
gains of up to 22% on Skylake and up to 24% on Haswell. We
believe that the hardware gather instructions which are used
for indirect lookups play a greater role here and this result
may expose their optimization for indirection of operands in
memory and not those who may be fetched from cache. This
would indicate that unlike LULESH, where the operands are
frequently accessed from cache due to the locality of the data,
XSBench benefits from a pipeline which can retrieve sparse
operands from memory with less overhead.

Overall, on a socket-to-socket comparison, the Skylake
processor achieves a performance advantage of around 1.85X
over Haswell for XSBench.

D. SW4Lite Numerical Intensive Geodynamics Mini-
Application

SW4 is an experimental research code which provides complex
3-dimensional modeling of seismic activities [23]. The appli-
cation has complex heterogeneous material models and free
surace boundary condition modeling on a realistic topography.
The code has gained a reputation for being a numerically
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intensive test of modern processors because of the optimized
kernels used to implement its internal models as well as its
calls to optimized BLAS and LAPACK routines. The size
and complexity of the full SW4 code makes rapid explo-
ration sufficiently difficult that a smaller representative mini-
application, SW4Lite, has been implemented to capture many
of the most important computational characteristics required
of future hardware.

Figure 7 shows the thread scaling of the SW4Lite kernel
when run on the Skylake and Haswell processors. For both
processors the effect of vectorization is significant – SW4Lite
is between 39% and 45% faster to execute on Skylake and
between 45% and 47% on Haswell reflecting the compute
intensive nature of the calculation and the higher level of
optimization which has been applied to the code by the
authors. For both processors the use of SMT-2 mode does not
provide a benefit which correlates with our anecdotal evidence
that the use of more threads in compute intensive codes does
not benefit since the floating point units are already saturated
and additional threads only serve to add overhead into the
application. For Skylake, the use of hardware threads causes a
slowdown of at least 11%, for Haswell the effect is larger with
a slowdown of approximately 30%. Overall, Skylake is almost
83% faster to execute the SW4Lite kernel over Haswell when
comparing the fast execution times on both processors.

VI. CONCLUSIONS

The Skylake Xeon server processor represents the very latest
in Intel’s offering for high-performance computing nodes. The
redesigned core has a raft of new features and refinements that
are intended to improve application performance including a
completely redesigned cache subsystem, a 50% increase in
the number of memory channels per socket providing a large
boost in memory bandwidth, wider, and more capable vector
processing units to increase computational throughput and a
new two-dimensional network-on-chip to reduce core-to-core
and core-to-memory latencies.



In this paper we have evaluated these new features with
several micro-benchmarks and mini-applications, which, for
the majority of the studies have been run with and with-
out vectorization and hardware hyper-threading in use. The
benchmarking coverage was designed specifically to provide
insight into what larger HPC applications might expect to see
once ported to a new Skylake platform based on the level of
optimization and environment configuration may be employed.

Our results show that the Skylake server provides a signif-
icant performance improvement over the previous generation
Haswell processor core. For intensive compute throughput, our
DGEMM benchmark showed a 2X gain in performance which
is largely expected due to the use of 512-bit wide vector units.
For the SW4Lite kernel, which is itself compute intensive, the
results are lower but still impressive with a reduction of up to
83% in benchmarked compute time.

Memory bandwidth intensive codes are expected to see
significant gains on Skylake with the additional two memory
channels per socket. The STREAM micro-benchmark used in
this paper demonstrated a dual-socket node-to-node gain of
nearly 2X to 223.8GB/s versus 112.6GB/s on the Haswell.
For the HPCG mini-application, which has been shown to
be heavily dependent on memory bandwidth, Skylake offers
a single-socket to single-socket advantage of 80% in kernel
performance for all four of the principal solve kernels studied.

The overhauled cache design – arguably one of the most
aggressive in Intel’s recent designs – found in Skylake has
the potential to provide large performance gains for code with
small to moderate locality. The increased L2 cache size will
permit codes with slightly weaker locality to gain from the
larger capacity when compared to previous generation proces-
sor cores. The microbenchmarked cache bandwidth demon-
strated lower read and write bandwidths when compared to
Haswell but, as expected, the cache bandwidths were available
for much larger data arrays because of the increased capacity.
This represents a trade off in the design of the processor –
a larger but slightly slower cache versus a smaller but faster
one. The LULESH mini-application was used to investigate
the impact on application performance in this setting. The
unstructured nature of the kernels found in LULESH results
in the compiler generated indirection-based memory accesses.
Due to the physical locality of points in the mesh, the code
has been shown to benefit from both L1 and L2 caches. For
LULESH, Skylake offers a gain of around 1.6X over Haswell
on a socket-to-socket basis.

Finally, to investigate whether the cache subsystem changes
and the use of a two-dimensional network-on-chip would
affect applications that are bottlenecked on sparse memory
accesses that actually reach the memory controllers (un-
like LULESH which typically are resolved in cache), we
benchmarked the Skylake and Haswell processors using the
XSBench mini-application. XSBench uses pointer indirection
to look up values from larger data structures replicating the
behavior of larger, complex Monte Carlo algorithms. For
XSBench, the use of hardware threading provided benefit
on both processors being studied which we attribute to the

latency-hiding benefits from SMT. Skylake again provided
approximately 1.8X improvement over Haswell in a socket-
to-socket comparison.

Overall, the results show that Skylake is a compelling
processor with a number of benchmark speedups measured at
around 1.8X over the previous generation Haswell core. Such
gains are hard to achieve and the list of changes described
in our Skylake overview show the extensive work which the
designers at Intel have undertaken to deliver improved per-
formance while requiring only limited increases in processor
power. The results described in this paper show the level of
performance that future algorithms and kernels might expect
in the eventuality that Skylake or a follow-on processor were
to be selected for a future hardware deployment.
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